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In this paper we describe a numerical model for investigating magnetohydrody-
namic (MHD) convective flow of a Boussinesq fluid in a rapidly rotating spherical
shell, driven by the buoyancy forces arising from incoming buoyant flux at the in-
ner core boundary. The model is designed to investigate the generation of magnetic
field in the Earth’s fluid outer core. Our model differs from that of G. A. Glatzmaier
and P. H. Roberts, who have recently investigated this problem, in several aspects.
We apply a different physical approximation in the force balance of the system: in-
stead of viscous stress, we use an axisymmetric inertial force to balance the axial
magnetic torque arising from the Lorentz force; we use a mixed spectral–finite dif-
ference algorithm for better parallelization of the code; and apply different boundary
conditions. We describe our numerical model in detail, and we test it by examining
purely thermal convection in a rapidly rotating fluid shell and by examining Kumar–
Roberts kinematic dynamos (modified for the spherical shell). Our results agree well
with those of the previous studies. We also present a weak-field dynamo solution
in a very simplified system and strong-field dynamo solutions in a more realistic
system. c© 1999 Academic Press
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1. INTRODUCTION

Planetary magnetic fields are widely believed to be generated and maintained by convec-
tive flow in the interior regions of the planets, resulting in so-called dynamo action. In the
case of the Earth, dynamo action is believed to occur in the iron-rich, fluid outer core.

The physics of dynamo action can be qualitatively described as follows: an electrically
conducting fluid with a velocityv in a magnetic fieldB results in a current densityJ which,
in the low-frequency magnetohydrodynamic (MHD) approximation, is given by

J ≡ 1

µ0
∇ × B, (1.1)

whereµ0 is the magnetic permeability. This current modifies the flowv through the Lorentz
forceFB,

FB ≡ J× B.

Dynamo action results if the magnetic fieldB is maintained against Ohmic decay.
In a rapidly rotating system, the flow is strongly influenced by the Coriolis forceFÄ

which, in the co-rotating reference frame, is given by

FÄ ≡ 2ρΩ× v,

whereρ is the fluid density andΩ is the angular velocity of the system. Dynamos may
be categorized into weak-field dynamos in whichFB ¿ FÄ, and strong-field dynamos in
whichFB ∼ FÄ.

Magneto-convection studies [6] show that the Coriolis force and the Lorentz force, if
acting alone, help stabilize the system against buoyancy forces. When both forces act on the
system and are similar in magnitude, the stabilizing effects of the forces offset each other
and the system becomes most unstable. The Earth’s dynamo (the geodynamo) is believed
to be a strong-field dynamo.

Despite much study, the details of this process are poorly understood, in part because
dynamo solutions must necessarily be three-dimensional [7], and because the Coriolis
forceFÄ makes the already complicated nonlinear governing equations even more difficult
to solve numerically, as we shall demonstrate in the following sections.

Hindered by the difficulties, most previous studies have focused on simplified systems,
such as generation of a magnetic field with a prescribed flow (the kinematic dynamo prob-
lem) or systems incorporating a parameterization of the nonlinear interactions (such as the
αω-dynamo problem). For a more detailed review, see, e.g., Gubbins and Roberts [8].

With the rapid development in computing facilities, as well as advances in computa-
tional fluid dynamics, direct numerical simulation of fully nonlinear and three-dimensional
dynamo processes has become possible. St. Pierre [9] found the first dynamically self-
consistent strong-field dynamo solutions, albeit with a simplified geometry and idealized
boundary conditions. Joneset al. [10] investigated dynamically self-consistent dynamo
solutions in a spherical geometry for a parameter regime similar to that of the Earth, but
with only a limited selection of nonaxisymmetric modes (the so-called “2.5-dimensional”
dynamo model). Recently, Glatzmaier and Roberts [1–4] found fully three-dimensional
dynamo solutions.
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Although the Glatzmaier–Roberts model (the GR-model) represents a great advance in
numerical modeling of the geodynamo, many fundamental problems remain to be addressed.
In this paper we present a numerical model for studying the geodynamo which, while similar
to the GR-model in some respects (for example, we retain a complete set of azimuthal
modes), includes some significant differences that we conjecture to be important for better
approximating the Earth’s core within computationally feasible parameter regimes. We have
also adopted different numerical algorithms for better computational performance.

Two problems are of particular importance in constructing our numerical model. The first
is the force balance in the Earth’s fluid core, which is described by the momentum equation,

(∂t + v · ∇)v+ 2Ω× v = −∇ p+ 1

ρ
J× B+ 1ρ

ρ
g+ ν∇2v, (1.2)

wherep is the modified pressure,1ρ is the density variation,ν is the kinematic viscosity
of the fluid, andg is the gravitational acceleration. In a rapidly rotating system, the fluid
inertia and the viscous force are very small compared to the Coriolis force. In the Earth’s
core, for example, the Ekman numberE that describes the ratio of the viscous force to the
Coriolis force is very small,

E ≡ ν

2Är 2
o

∼ O(10−15), (1.3)

based on the molecular kinematic viscosity of the core fluid (ro is the mean radius of the
core–mantle boundary). Therefore, one expects that the Coriolis force, the Lorentz force,
and the buoyancy force1ρg/ρ will balance to leading order in a strong-field dynamo.

However, the azimuthal component of the Lorentz force integrated over any cylindrical
surface6 coaxial with the rotation axis across the fluid core (the “Taylor cylinders”; see
Fig. 1) can only be balanced by inertia and local viscous stress (provided that the buoyancy
force is radial), ∫

6

dS(J× B)φ =
∫
6

dSρ

[
Dv
Dt

]
φ

−
∫
6

dSρν(∇2v)φ, (1.4)

where the subscriptφ denotes the azimuthal components of the forces in the spherical
coordinate system (r , θ , φ).

The simplest approach is to neglect the viscous force and inertia in the momentum balance
(1.2) (the “magnetostrophic balance”). Taylor [11] showed that with this approximation,
the velocity field can be uniquely determined if the constraint

TB ≡
∫
6

dS(J× B)φ = 0 (1.5)

is satisfied. It is clear that the Taylor’s condition (1.5) is a singular limit of Eq. (1.4). We
call the solution that satisfies (1.5) a Taylor state. Note thatTB is proportional to the axial
Lorentz torque acting on6 (see Section 3); accordingly we also callTB the Lorentz torque
and (1.4) the torque balance equation.

Although we believe that the geodynamo is a strong-field dynamo, we do not expect it
to be an exact Taylor state: fluid inertia and viscous forces in the Earth’s core cause small
departures from the Taylor state. It is therefore important to understand the effect of the two
forces in the core dynamics.
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FIG. 1. The cylindrical surface6 on which the Taylor’s constraint is derived.

Unfortunately, it is not computationally feasible to model the geodynamo with the Ekman
number in (1.3). Instead, we must seek ways to model the geodynamo with numerically
feasible parameters without altering the core dynamics qualitatively. The answer to this
problem relies on our finding an appropriate approximation to the force balance in the
Earth’s core.

This paper is organized as follows. In Section 2, we present the basic system and the cor-
responding equations. We also discuss in detail the force balance in our system and present
the corresponding physical approximations. In Section 3 we describe the numerical method
that we use. In Section 4 we discuss tests of simplified versions of the code, examining
purely thermal convection and the Kumar–Roberts kinematic dynamo. In Section 5, we
report the results of a weak-field dynamo and a strong-field dynamo found from the full
system.

2. MATHEMATICAL MODEL

We consider a simple mathematical model: an incompressible, electrically conducting
fluid in a spherical shellri < r < ro (wherer is the radius) which rotates rapidly about a
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vertical axis with an angular velocity

Ω = Ä1z. (2.1)

We refer tor = ri as the inner core boundary andr = ro as the outer core boundary (or, in
the case of the Earth, the core–mantle boundary).

The momentum balance in the fluid shell is described by (1.2). The variations of the
magnetic fieldB and the temperature perturbationT are described by the equations(

∂t − η∇2
)
B = ∇ × (v× B), (2.2)(

∂t − κ∇2
)
T = −v · ∇T + Q, (2.3)

whereη is the magnetic diffusivity,κ is the thermal diffusivity, andQ describes internal
heating (or secular cooling). The incompressibility of the fluid and the nonexistence of
magnetic monopoles give

∇ · v = ∇ · B = 0. (2.4)

We impose a constant incoming heat flux at the inner core boundaryr i by a prescribed
temperature gradient

hT ≡ −
[
∂T

∂r

]
r=ri

. (2.5)

The internal heatingQ is assumed to be

Q ≡ εhTκ

ro
, (2.6)

whereε ¿ 1 (ε= 0.01 in this study). By (2.5) and (2.6), the system allows the conductive
solution

T0(r ) = T̃0+ rohT

[
r 2

io

(r/ro)

(
1− ε

3
rio

)
− ε

6

(
r

ro

)2
]
, (2.7)

where

rio ≡ ri

ro
(2.8)

is the ratio of the radii of the inner core and the outer core boundaries. The density variation
1ρ is given by

1ρ

ρ
= −αT (T − T0) ≡ −αT2, (2.9)

whereαT is the thermal expansion coefficient of the fluid and2 is the temperature pertur-
bation.

To model the interaction of the Earth’s fluid outer core with the solid inner core and the
mantle, we permit angular momentum to be exchanged with the mantle above (r > ro) and
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the inner core below (r < ri ). Denoting the angular momentum of the inner core byM i and
the angular momentum of the mantle byMm in the co-rotating frame, we have (see, e.g.,
Goldstein [12])

d

dt
M i,m +Ω×M i,m = ΓB + Γν + Γp, (2.10)

whereΓB, Γν , andΓp are the magnetic, viscous, and pressure torques acting on the bound-
aries, respectively. The pressure torqueΓp vanishes on spherical boundaries.

Denoting the deviation of the temperature from the mean state by2, using the radiusro

of the outer core boundary as the length scale, the magnetic diffusive timeτ = r 2
o/η as the

time scale,B= (2Äµρη)1/2 as the magnetic field scale, andhTro as the temperature scale,
we obtain the nondimensional equations

Ro(∂t + v · ∇)v+ 1z× v = −∇ p+ J× B+ E∇2v+ Rth2r , (2.11)(
∂t −∇2

)
B = ∇ × (v× B), (2.12)(

∂t − qκ∇2
)
2 = −v · ∇[T0(r )+2], (2.13)

whereJ andT0 are the nondimensional forms of (1.1) and (2.7), respectively. The nondi-
mensional parameters in Eqs. (2.11)–(2.13) are the Ekman numberE, the magnetic Rossby
numberRo, and the Prandtl numberqκ that describe the intrinsic material properties of the
system

R0 ≡ η

2Är 2
o

, qκ ≡ κ

η
; (2.14)

and the Rayleigh numberRth that measures the driving buoyancy force

Rth ≡ αT gohTr 2
o

2Äη
. (2.15)

The magnetic Rossby numberRo and the Ekman numberE are very small in a rapidly
rotating fluid,

Ro, E ¿ 1. (2.16)

In the Earth’s outer core, for example,

Ro ∼ O(10−9). (2.17)

Consequently, there exist rapidly rotating and slowly decaying modes, with differences of
several orders of magnitude in their frequencies and the decay rates, as demonstrated in
Appendix A (for a more complete analysis, see a more recent paper by Walkeret al. [13]).
Furthermore, very thin boundary layers develop at the boundaries (Ekman layers) and at
the Taylor cylinder tangent to the solid inner core at the equator (Stewartson layers). For a
detailed discussion of these boundary layers, we refer the reader to Greenspan [14].

Because of these difficulties, several approximations have been adopted in previous
studies, which have direct consequences on the torque balances on the Taylor cylinders,
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given by

TB = Ro

∫
6

d A

[
Dv
Dt

]
φ

− E
∫
6

d A(∇2v)φ, (2.18)

which is the nondimensional form of (1.4).
In the simplest approximation, the inertial modes and the torsional oscillations (in

Appendix A) vanish from the system. So do the boundary layers arising from the viscous
couplings on the inner and outer boundaries. The physical justification for the approxima-
tion is that the fast modes associated with the inertial force are irrelevant to the dynamics
under consideration and that the viscosity is negligible in the mainstream flow [15], which is
where it is believed dynamo action occurs. With this approximation, the Taylor’s constraint
(1.5) is used to determine the geostrophic part of the flow. This constraint (1.5) has been
recently extended to include non-axisymmetric boundaries [16].

However, the dynamical process in the Earth’s core does not follow (1.5) exactly. Tough
and Roberts [17] first proposed balancing departures from the Taylor state (1.5) by a weak
viscous drag at the boundaries for the slow modes (i.e., the modes with negligible inertia).
Braginsky [18] further developed this idea, conjecturing a special solution, the so-called
Model-Z solution, in which the magnetic field lines align almost parallel to the rotation axis
of the Earth. We name this approximation the “viscous-type” approximation in the rest of
the paper.

There exist two approaches to incorporating viscous effects: indirectly by restoring the
viscous torque in the torque balance [15], or directly by retaining the viscous force in the
momentum equation (2.11).

The viscous-type approximation may not be appropriate to the Earth’s outer core. Ob-
servations of variations in the Earth’s rotation rate (length-of-day variations) show that on
decadal time scales, changes in the rotation rate of the Earth result from the exchange of
axial angular momentum between the fluid core and the solid mantle [19, 20]. It is very
unlikely that the viscous friction at the core–mantle boundary is important for the angular
momentum exchange, since the time scale for viscous dissipation of the required angular
momentum is much longer than the observed decadal time scales.

On the other hand, torsional oscillations, which result from the balance of the inertia and
the Lorentz torqueTB in (2.18), are excluded both in the magnetostrophic approximation and
in the viscous-type approximation, thus rendering them inappropriate for the short-period
geomagnetic secular variations.

Based on the above analysis and the fact that the axial angular momentumMz de-
pends only on axisymmetric part of the flow, we choose to retain the axisymmetric part
of the inertial force in the momentum equation (2.11). Denoting the axisymmetric and
non-axisymmetric parts of the functionf by f̄ and f ′,

f̄ ≡ 1

2π

∫ 2π

0
f dφ, and f ′ ≡ f − f̄ , (2.19)

respectively, we approximate the momentum equation (2.11) as

Ro(∂t v̄+ v · ∇v)+ 1z× v̄ = −∇ p̄+ J× B+ E∇2v̄+ Rth2̄r , (2.20)

1z× v′ = −∇ p′ + (J× B)′ + E∇2v′ + Rth2
′r . (2.21)
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The angular momentum balance (2.10) is also approximated as

Ro
d

dt
Mz = 0z, (2.22)

1

2
Mx,y = ±0y,x. (2.23)

We refer the reader to Appendix D for detailed expression for the torques and the angular
momentumM .

To further reduce viscous effects in our system, we apply viscous stress-free boundary
conditions (2.27), thus eliminating viscous coupling at the boundaries. Accordingly, viscous
effects are ofO(E) in our system.

Our approximation is an extension of the force balance for the torsional oscillations
proposed by Taylor [11] in his studies of the Taylor’s constraint (1.5). Therefore we call
our method here the “inertial-type” approximation in the rest of the paper.

Some previous studies have also analyzed the effect of inertia on the Taylor state. Roberts
and Stewartson [21] restored inertia to balance a finite Lorentz torque in their weakly
nonlinear analysis of magneto-convection; Jault [22] examined the effect of inertia on the
Taylor state in the mean-field dynamo studies; and St. Pierre [9] applied inertia in his fully
nonlinear studies of the dynamo in a planar layer system. Glatzmaier and Roberts [3] also
include inertia in their model, though it is orders of magnitude smaller than the viscous
force, so that torsional oscillations will be strongly damped in their model.

We solve Eqs. (2.20), (2.21), (2.12)–(2.13) with the following boundary conditions. The
boundary conditions for the temperature2 take one of two forms. For the fixed heat flux
across the boundaries,

∂2

∂r
= 0, at r = rio, 1. (2.24)

Alternatively, if the temperature is fixed at the boundaries,

2 = 0, at r = rio, 1. (2.25)

Likewise, the boundary conditions of the velocity fieldv may have one of the two fol-
lowing forms. For non-slip boundaries,

[v] = 0, at r = rio, 1, (2.26)

where[ ] denote the difference across the boundaries. Alternatively, if the boundaries are
impenetrable and viscous stress-free,

1n · v = 1n × (σν · 1n) = 0, at r = rio, 1, (2.27)

where1n is the norm of the boundaries andσν is the viscous stress tensor. For the detailed
expression ofσν in spherical coordinates, see, e.g., Landau and Lifshitz [23].

The boundary conditions for the magnetic field depend on the electrical conductivity of
the boundaries. For the perfectly electrically conducting boundaries,

1n · B = 1n × J = 0, at r = rio, 1; (2.28)
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for the perfectly electrically insulating boundaries,

[B] = 1n · J = 0, at r = rio, 1. (2.29)

If the boundaries are finitely electrically conducting, we have

[B] = [1n · J] = [1n × E] = 0, at r = rio, 1, (2.30)

whereE is the nondimensional electrical field.

3. NUMERICAL METHOD

Because of (2.4), we introduce the poloidal–toroidal decompositions

v = ∇ × Tv1r +∇ × ∇ × Pv1r , (3.1)

B = ∇ × Tb1r +∇ × ∇ × Pb1r , (3.2)

where1r is the radial unit vector andT andP are the toroidal and poloidal scalars, respec-
tively. For a given radiusr , we expand the variables in spherical harmonics,

[ Pv, Tv, Pb, Tb]T =
∑

m=0,M

∑
l=m,L

[
vm

l , ω
m
l , b

m
l , j m

l

]T
(r, t)Ym

l (θ, φ)+ c.c., (3.3)

whereYm
l (θ, φ) are the orthonormal spherical harmonic functions and c.c. stands for the

complex conjugate. A similar expansion is made for the temperature perturbationr2. In our
model, the azimuthal truncation orderM is in general lower than the meridional trunction
orderL.

Denoting bŷs1 the vector of variables in spectral space, and substituting (3.1)–(3.3) into
(2.12)–(2.13) and (2.20)–(2.21), we obtain the following partial differential equations for
the spectral coefficients,

A1
∂

∂t
ŝ1+ A2ŝ1 = N̂1, (3.4)

whereA1 andA2 are two matrices of linear radial differential operators, andN̂1 represents
the nonlinear interactions. Detailed expressions are given in Appendix B.

The nonlinear term̂N1 is solved by the collocation point method via spherical transforms.
This method has long been applied in geophysical fluid systems (see, e.g., [24]); for a detailed
description of the method, we refer the reader to Canutoet al. [25].

The spherical transforms account for most of the CPU time. For example, in our simulation
on a CRAY J916, more than 80% of the total CPU is attributed to the spherical transforms.
A key issue is therefore to optimize these transforms.

One approach is to develop a fast spherical transform algorithm. With a truncation order
0≤ m, l ≤ L, a fast transform needs onlyO[L2 log L] operations, in contrast toO(L3 log L)
operation for standard transforms [26]. Unfortunately, fast transforms are not currently
practical because of high overhead and the memory requirement for our model.

Another approach is to parallelize evaluation of the spherical transforms. The spher-
ical transforms can be carried out independently at different radii. To exploit this, we
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develop a fourth-order compact finite difference algorithm on nonuniform grid points
{ri | i = 0, 1, . . . , N} in radius to resolve possible boundary layers in the system optimally.

For illustration, we consider the second-order differential equation

∂2

∂r 2
y+ f (r )y = 0, (3.5)

where f is a known function ofr . Introducing

ỹ = ∂y

∂r
, (3.6)

we approximate Eq. (3.5) as

1

12h
[yi+2+ 9yi+1− 9yi − yi−1] − 1

2
[(gỹ)i + (gỹ)i+1] = 0, (3.7)

1

12h
[ ỹi+2+ 9ỹi+1− 9ỹi − ỹi−1] + 1

2
[(g f y)i + (g f y)i+1] = 0, (3.8)

for i = 1, 2, . . . , N− 2. In the above equations,gi is the transform between the radiusr and
the uniform grid spacex,

gi ≡ (dr/dx)xi ,

andh is the mesh size of the uniform grid inx. At the boundaries, we have

± 1

2h
[yi±2− yi ] − 1

6
[(gỹ)i + 4(gỹ)i±1+ (gỹ)i±2 = 0, (3.9)

± 1

2h
[ ỹi±2− ỹi ] +

1

6
[(g f y)i + 4(g f y)i±1+ (g f y)i±2 = 0, (3.10)

for i = 0, N− 1. To better resolve the boundary layers, we choose the collocation points of
the Chebyschev polynomials as the radial grid points

{
ri = 1

2(1− rio) cosN xi + 1
2(1+ rio),

xi = (N − i )π/N,
for i = 0, 1, . . . , N. (3.11)

Denoting byŝ2 andN̂2 the values of̂s1 andN̂1 at the radial grid points, respectively, we
reduce the system (3.4) into a set of ODEs,

B1
dŝ2

dt
+ B2ŝ2 = N̂, (3.12)

whereB1 andB2 are two linear (time independent) matrices. Because of the small inertia in
the system, the norm ofB1 is much smaller than that ofB2. To deal with this stiffness, we
solve Eqs. (3.12) by the Crank–Nicolson scheme (a second-orderA-stable implicit scheme
[27]) for the linear terms, and an Adams-family third-order predictor–corrector algorithm
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[28] for the nonlinear terms:

(
B1+ 1t

2
B2

)
˜̂s=

(
B1− 1t

2
B2

)
ŝ(k)2 +

1t

12

[
23N̂2

(
ŝ(k)2

)
− 16N̂2

(
ŝ(k−1)

2

)+ 5 N̂2
(
ŝ(k−2)

)]
, (3.13)(

B1+ 1t

2
B2

)
ŝ(k+1)

2 =
(

B1− 1t

2
B2

)
ŝ(k)2 +

1t

12

[
5 N̂2

(
˜̂s
)

+ 8 N̂2
(
ŝ(k)2

)− N̂2
(
ŝ(k−1)

2

)]
. (3.14)

By this algorithm, we filter out the fast inertial waves that are irrelevant to the physical
processes under consideration. Also, we need to evaluate twice the nonlinear terms per time
step with the Adams-family algorithm.

The stability condition (CFL condition) of the algorithm is determined by the nonlinear
termsN̂ that are solved explicitly (e.g., [28]),

1t |λ| ≤ 1.1, (3.15)

where the parameterλ is determined by the nonlinear termsN̂; see (C.6) in Appendix C.
The CFL condition (3.15) is tested at each time step in our simulation.

The parallelization of the code is tested on CRAY J916 with four processors. Denoting
by τN the wall clock time of the simulation withN processors, we found that, as shown in
Fig. 2,

τ1 ≈ 3.6τ4.

4. THERMAL INSTABILITY AND KINEMATIC DYNAMO SOLUTIONS

It is difficult to benchmark our model because there are no three-dimensional, fully
nonlinear numerical dynamo solutions in similar systems. However, we are able to test
our model against well known studies in thermal instabilities and kinematic dynamos.
In particular, we are interested in isolating critical Rayleigh numbers for purely thermal
convection and the growth rate of magnetic field perturbations in kinematic dynamos. For
all simulations in this paper, we choose

Ro = E, qκ = 1, rio = 12/35. (4.1)

4.1. Thermal Convection in a Rapidly Rotating Fluid

Our first test is to study thermal convection by eliminating the magnetic fieldB in
our system. We wish to identify, at least in the context of purely thermal convection, the
asymptotic regime of the small parameters.

In this simplified system, we assume that the heat flux is fixed at the boundaries, and that
the boundaries are impenetrable and “stress-free”; see (2.24), (2.27), and (3.3). With these
boundary conditions, there is no coupling across the boundaries, and hence the angular
momentum of the fluid shell is conserved. For convenience, we assume a zero axial angular
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FIG. 2. The test of the parallelization of the code. The horizontal axis is the numberN of the processors. The
vertical axis is the ratioτ1/τN of the clock time of simulation. The solid circles are the ratios for different numbers
of processors used in simulation. The dotted line represents the perfect parallelization (zero overhead).

momentum in the fluid core. Note that the parameters (4.1) imply that

pκ ≡ ν

κ
= 1. (4.2)

The truncation order varies with the Ekman numberE, from L = 28 for E= 10−3 to L =
42 for E= 10−5. The truncation limit is chosen such that the energy of the cutoff mode is
at least four orders of magnitude smaller than the energy peak value.

We start the simulation with small-amplitude random perturbations. We gradually in-
creaseRth to a critical valueRc

th at which the perturbations stop decaying with time. For
comparison with theoretical asymptotic results, we calculateRc

th numerically by the method
summarized as follows: for a given Ekman numberE, we evaluate the growth rate (or the
decay rate)λ of the perturbations for differentRth. Then we choose the two Rayleigh num-
bersR1 andR2 with λ1 andλ2 closet to zero (i.e., the critical point). The critical Rayleigh
numberRc

th is then estimated by the extrapolation

Rc
th = R1+ λ1

λ1− λ2
(R2− R1).
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With this method, we obtain

Rc
th = 115.9, 248.1, 450.2 (4.3)

for the Ekman numbers

E = 10−3, 10−4, 10−5,

respectively. From these values, we derive the asymptotic relation

Rc
th ≈ 10.1E−1/3. (4.4)

This is slightly larger than the early thermal convection resultRc ∼ 8.6956E−1/3 for the
Prandtl number (4.2) in a rotating system [6, 29]. However, it is close to a more recent
asymptotic result [30]

Rc
th ∼ 10.8E−1/3.

The differences in the results may be partly due to differences in the systems: a rapidly
rotating fluid sphere with a uniformly distributed heat source in the fluid has been considered
in the previous studies. They may be also caused by the errors in estimating the growth
ratesλ1 andλ2.

When Rth is slightly above critical, our solution shows the characteristics of the most
unstable mode in linear stability analysis [29]: i.e., the convective flow drifts eastward, and
the temperature perturbation is symmetric about the equator.

Our results show that inertia is of secondary importance in the onset of thermal instability
and in the slightly super-critical flow. For example, forE= 10−4, we do not observe a
significant axisymmetric flow in our solutions whenRth is slightly super-critical. However,
whenRth is well above critical (for example,Rth∼> 10Rc

th), a strong axisymmetric toroidal
flow occurs in the system. In Fig. 3 we show a snapshot of the axisymmetric part of the
flow. On the right are streamlines of the axisymmetric poloidal flow (the colors represent
the sense of circulation) and on the left is the differential rotation

ωd = vφ/r sinθ. (4.5)

The color scale in the figure shows the (nondimensional) values ofωd.

4.2. Kumar–Roberts Kinematic Dynamo Model

In early studies of dynamo theory, great effort was devoted to understanding the generation
of magnetic field with a prescribed flow. In the Kumar–Roberts kinematic dynamo [5], the
flow is very simple, yet sufficient to generate magnetic field, provided the magnetic Reynolds
number

Rm ≡ VL

η
, (4.6)

whereV is the typical magnitude of the applied flow, is above some critical value. Many
subsequent studies in kinematic dynamo theory are extensions of this model [31, 32].
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FIG. 3. A snapshot of the differential rotationωd (in the left hemispherical shell) and the streamlines of the
axisymmetric poloidal flow (in the right hemispherical shell). The color on the left shows the (nondimensional)
values ofωd and the color on the right shows the direction (clockwise/anti-clockwise) of the poloidal flow. The
vertical axis is the rotation axis of the system.

We reinvestigate the Kumar–Roberts problem in our spherical shell system with the
modified flow

ω0
1 = −ε0

√
4π/3x2(1− x2),

v0
2 = ε1

√
4π/5x6(1− x2)3, (4.7)

v2
2 =

√
2π/5x4(1− x2)2(ε2 cos 3πx − i ε3 sin 3πx),

whereε0,1,2,3 are constants and

x ≡ r − rio

1− rio
(4.8)

is the transformed radial coordinate. The coefficientsεi are chosen to be those in the
Kumar–Roberts calculations [5]. We also assume that both boundaries are perfect electrical
insulators (see (2.29) and (3.3)) and that the magnetic field vanishes at the origin and at
infinity.

In kinematic dynamo studies, one needs to solve only the induction equation (2.12),
which is linear inB. One approach is to solve (2.12) as an eigenvalue problem by assuming

B = B0eσ t , (4.9)
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whereσ is the eigenvalue (the complex growth rate) of the mode. Substituting (4.9) into
(2.12), one can obtain the eigenvalue equation

det|D1− σ I | = 0, (4.10)

whereD1 is a constant matrix andI is the unitary matrix. Denoting byσ1 the eigenvalue
with the largest real part, we see that dynamo action occurs if

λ1 ≡ <(σ1) > 0, (4.11)

i.e., at least one mode increases exponentially with time. The valueλ1 is referred to as the
growth rate of the magnetic field.

Here we integrate the induction equation (2.12) directly from a random initial state, with
the truncation orderL =M = 21 andN= 36. After a finite time interval1T , the solution
is rescaled with the scaling factorf ,

f = ‖B‖2 ≡
[ ∫

Vcore

|B|2 dV

]1/2

, (4.12)

whereVcore is the volume of the spherical shell. After an initial transient period, we can
obtain the largest growth rate

λ1 = ln( f )/1T (4.13)

and the corresponding most unstable mode. The transient period depends on the values of
Rm: our calculations show that this period lasts approximately two magnetic free-decay
times, as shown in Fig. 4.

In Fig. 5, we compare our results with those of Holme [32], who solved the eigenvalue
problem (4.10) via a second-order finite difference scheme on uniform grid points in radius.
Note that our results (the dashed lines) intersect with Holme’s (solid lines) approximately
at N= 65 for all values ofRm, suggesting that the differences are mainly caused by the
radial finite difference approximations. In Table I, we list the values of our growth rates,
the theoretical results for the free-decay (Rm = 0) and the extrapolated results of Holme’s
eigenvalues. Again, we observe that the results are consistent.

TABLE I

The Growth Rate for the Kumar–Roberts Kinematic Dynamo Model

Rm 0 4000 4500 5500 6000

λ1 −9.9796 −1.8828 −0.9663 0.9378 1.8712
λ̃1 −10.0257 −2.0096 −1.1331 0.6354 1.5235

Note.λ1 are the growth rates from our model.λ̃1 are the eigenvalues from the analytical
study (Rm= 0), and the extrapolated values of the eigenvalues of Holme’s kinematic dynamo
model (R. Holme, private communication).
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FIG. 4. The growth rateσ of the magnetic field perturbation in the Kumar–Roberts kinematic dynamo for
various magnetic Reynolds numbersRm. The horizontal axis is the (nondimensional) time. Because the free-decay
rate (Rm= 0) is approximately 10 (see Table I), the nondimensional magnetic free decay time istd ≈ 0.1.

FIG. 5. The comparison of the growth rateλ1 for the Kumar–Roberts kinematic dynamo model. The dashed
lines are the results from our model. The circles are the results from the Holme’s eigenvalue model forN= 50,
80, 120, whereN is the number of grid points in radius in his model (R. Holme, private communication).
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5. THERMALLY DRIVEN SELF-CONSISTENT DYNAMOS

In our search for fully dynamically, self-consistent dynamo solutions, we also use fixed
heat flux boundary conditions and viscous stress-free boundary conditions. The boundary
conditions for the magnetic field vary in our simulation; we address this later in this section.

The magnetic Rossby numberRo and the Ekman numberE vary in our simulation. We
start with the value

E = 10−4. (5.1)

The corresponding critical Rayleigh number for the thermal convection is given in (4.3).
As shown for the Kumar–Roberts model in Section 4, dynamo action occurs if the driving

flow is sufficiently strong, or equivalently, if the (thermally driven) convection is sufficiently
vigorous, thus suggesting that dynamo action occurs if the Rayleigh numberRth reaches a
certain threshold valueRm

th> Rc
th, and that the magnitude of the generated magnetic field

increases withRth.
However, when the Lorentz force is comparable to the Coriolis force, the critical value

for convection decreases, as summarized in [6]. Thus one may expect that if the generated
magnetic field is sufficiently strong, dynamo action may persist at subcritical Rayleigh
numbers, i.e., atRth< Rc

th. This was shown analytically by Childress and Soward [33] in a
rapidly rotating planar layer system, and demonstrated numerically by St. Pierre [9].

Guided by these studies, we start our dynamo simulation with small-amplitude random
perturbations to seek weak-field dynamos, and with large-amplitude random states to seek
strong-field dynamos.

5.1. Weak-Field Dynamo Solutions

For the weak-field dynamo study, we assume that the inner core is a perfect electrical
conductor, and that the mantle is a perfect electrical insulator; see (2.28) and (2.29). Since
the magnetic stress vanishes at both boundaries, the total angular momentum of the fluid is
conserved, a condition that is well satisfied in our calculations.

We integrate the solution from a small-amplitude, random initial state with supercritical
Rth. Initially, the magnetic field decays exponentially, while the velocity and temperature
perturbations develop to a finite amplitude state, indicating a non-magnetic thermal convec-
tive solution. The decay rate of the magnetic field perturbations decreases asRth increases.
The magnetic field stops decaying whenRth reaches a valueRm

th:

Rm
th ≈ 14Rc

th. (5.2)

In Fig. 6, we show the variation of theL2-normB of the magnetic field forRth= 14Rc
th

(the solid line), and forRth= 13Rc
th (the dashed line). Note that dynamo action occurs first

at Rm
th.

The magnetic field is weak, in the sense that the local Elsasser number3̃ is very small
in the fluid core:

3̃ ≡
∣∣∣∣ J× B
1z× V

∣∣∣∣ ≤ 2× 10−3. (5.3)
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FIG. 6. The L2-norm of magnetic fieldB perturbations at different values of the Rayleigh numberRth. The
solid line is for Rth= 14Rc

th, while the dashed line is forRth= 13Rc
th. The timet is scaled with the magnetic

free-decay timetd.

Also, the total magnetic energyEB is small compared with the total kinetic energyEV :

EB

EV
≈ 0.1. (5.4)

The length scale of the magnetic field is very small, as shown by a snapshot of the radial
magnetic field at the outer core boundary (Fig. 7).

The field is generated near the inner core boundary and spreads spirally toward the outer
core boundary. The zonal propagation of the magnetic field varies radially: the field drifts
eastward (in the direction of the rotation of the system) near the outer core boundary, and
drifts westward near the inner core boundary.

Compared with the imposed flow (4.7) in the Kumar–Roberts dynamo model, the con-
vective flow in our system is far more efficient in the magnetic field generation: the local
magnetic Reynolds number

R̃m ≡ 1

2π

∫ 2π

0
dφ
|∇ × (v× B)|
|∇2B| ≤ 20 (5.5)

is only slightly above the lower limit required for the onset of dynamo action [34], but much
smaller than those values in the Kumar–Roberts dynamo solutions (see Table I).

This indicates that the weak magnetic field interacts dynamically with the flow. To illus-
trate this, we show, in Fig. 8, a snapshot of the axisymmetric flow of the solution. Compared
with that of the purely thermal convection (Fig. 3), we observe significant differences in the
differential rotationωd. This is partly caused by a small magnetic torqueTB on the Taylor
cylinders that can only be balanced by a small axial inertial force (∼Ro).
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Although our system differs from the systems studied previously, such as rotating annulus
[35] and rotating spheres [36], our solutions share some properties with the weak-field
dynamo solutions in those systems. For example, the toroidal field is comparable to the
poloidal field, and the differential rotation decreases with the depth.

5.2. Strong-Field Dynamo Solutions

We study strong-field dynamos at higher Rayleigh numbers. To approximate more closely
the Earth’s outer core, we assume that the electrical conductivity of the inner core is the
same as that of the fluid core (ηi = η). Hollerbach and Jones [37] demonstrated that a finitely
conducting solid inner core is important in their dynamo solutions.

We assume also that there is a conductive layer above the outer core boundary with
(nondimensional) thickness

δm = 2/35

and magnetic diffusivity

ηm = 400η.

The finite Lorentz stress on the boundaries generates couplings across the boundaries.
To avoid high truncation for the initial transient period and to reduce the CPU time for

the process, we introduce a hyper-dissipation,

ν =
{
ν0, for l ≤ l0,
ν0
[
1+ ε(l − l0)2

]
, for l > l0; (5.6)

similarly for magnetic diffusionη and thermal conductivityκ. As the simulation proceeds,
we gradually reduce the hyper-dissipation by either increasingl0 or decreasingε. Our
application of the hyper-dissipation follows from Glatzmaier and Roberts [1], though the
form (5.6) is weaker than that of Glatzmaier and Roberts.

For mathematical convenience, we apply asymptotic boundary conditions near the origin
of the system [5], [

bm
l (r ), j m

l (r )
] ∼ r l+1 at r = 0.1rio. (5.7)

The magnetic field boundary conditions at the boundaries are, by (2.30) and (3.3),

[bm
l ] = [ j m

l ] = [∂bm
l

/
∂r ] = 0,

at r = 1, rio,

[αη
(
∂ j m

l

/
∂r
)
] = r

l (l + 1)
H(r )ml ,

(5.8)

where

αη ≡ ηi,m

η
(5.9)

denotes the ratio of the magnetic diffusivities across the boundaries and

H = 1

sinθ

∂

∂φ
Br [vθ ] − 1

sinθ

∂

∂θ
sinθBr [vφ ]. (5.10)
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FIG. 9. The L2-norm of the strong magnetic field solution forRo= E= 10−4. The horizontal coordinate is
the time scaled by the magnetic free-decay timeτd, and the vertical coordinate is theL2-norm of the magnetic
field.

We study strong-field dynamo action for two sets of parameters,

E = 10−4 and E = 2× 10−5. (5.11)

In the first case, a strong-field dynamo solution is found when

Rth ≈ 40Rc
th for ε = 0.032, l0 = 5, (5.12)

as shown in Fig. 9. In the second case, a strong-field dynamo solution is found when

Rth ≈ 35Rc
th for ε = 0.05, l0 = 5, (5.13)

as shown in Fig. 10. In both cases, we chooseL = 40, M = 32, andN= 40.
The generated magnetic field is strong: the Lorentz force is comparable to the Coriolis

force

3̃ ≈ 1 (5.14)

in the bulk of the fluid core. The magnetic energy is also much larger than the kinetic energy,
with a typical ratio

EB

Ev
≈ 2000 (5.15)

in the solutions.
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FIG. 10. Similar to the previous figure, but forRo= E= 2× 10−5.

In Fig. 11, we show a snapshot of the radial componentBr of the second solution at
the outer core boundary. It is dominantly dipolar, with the magnetic field lines entering the
fluid core in the northern hemisphere and leaving the fluid core in the southern hemisphere.
The field drifts westward at the boundary. These features are very similar to those of the
geomagnetic field at the core–mantle boundary inverted from the observations at the surface
of the Earth [38].

The configuration of the magnetic field inside the fluid core is simple. In Fig. 12 we show a
snapshot of the axisymmetric toroidal magnetic field (in the left hemispherical shell) and the
field lines of the axisymmetric poloidal field (in the right hemispherical shell). The poloidal
field is predominantly dipolar, while the toroidal field is predominantly quadrupolar. In
particular, we observe that the field is very strong in the bulk of the fluid core outside the
tangent cylinder.

Our solution differs from that of the Glatzmaier and Roberts [4] inside the fluid core. In
their model, the field is strong near the inner core boundary and within the tangent cylinder.
Also, the field in their solution displays a more complicated morphology, in particular near
the inner core boundary. We discuss these differences elsewhere [39].

6. CONCLUSIONS

In this paper we have presented a numerical model to simulate convective flow in a
rapidly rotating spherical shell. We assume that the (axisymmetric) inertia is important in
the torque balance (1.4) on the Taylor cylinders, and we minimize the viscous torque on the
cylinders by imposing the viscous stress-free boundary conditions.
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FIG. 7. A snapshot of the radial magnetic fieldBr of the weak-field dynamo solution at the outer core boundary
r = 1.

FIG. 8. A snapshot of the differential rotationωd (in the left hemispherical shell) and the streamlines of the
axisymmetric poloidal flow (in the right hemispherical shell) of the weak-field dynamo solution.
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FIG. 11. A snapshot of the radial magnetic fieldBr of the strong-field dynamo solution at the core–mantle
boundaryr = 1.

FIG. 12. A snapshot of the axisymmetric part of magnetic field in the strong-field dynamo solution forRo=
E= 2×10−5. The toroidal field is shown in the left hemispherical shell and the magnetic field lines of the poloidal
field are shown in the right hemispherical shell. The colors on the left represent the strength of the toroidal field.
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We use a mixed spectral–finite difference scheme in space and a multi-step predictor–
corrector algorithm in time. The time step is controlled by Alfv´en modes that result from
a balance of the inertial force and the Lorentz force (CFL condition). We have tested our
model against purely thermal convection and the Kumar–Roberts kinematic dynamo, and
have found good agreement.

We have studied weak-field dynamos in a simple, mechanically isolated system by allow-
ing an electrically perfectly conducting inner core and an electrically perfectly insulating
mantle. We found a weak-field dynamo solution at the supercritical Rayleigh numberRm

th=
14Rc

th for Ro= E= 10−4. The Lorentz force is negligible compared with the Coriolis force,
and the magnetic energy is small compared with the kinetic energy. The magnetic field
is dominantly equatorial dipolar (l =m= 1 mode in spherical harmonic expansion) at the
outer core boundary. The length scale of the field is very small in the fluid core.

We have studied strong-field dynamos in a system closer to the Earth: we include a
finitely conducting solid inner core and a finitely conducting layer at the top of the fluid
core. The exchange of the angular momentum across the boundaries is carried out by the
magnetic torque acting on the boundaries. In this system, we found two strong-field dynamo
solutions: one forRth ≈ 40Rc

th, Ro= E= 10−4 and one forR≈ 35Rc
th, R0= E= 2×10−5.

The generated magnetic field is strong: the Lorentz force is comparable to the Coriolis force
in the bulk of the fluid core and the magnetic energy is three orders of magnitude larger
than the kinetic energy.

At the outer core boundary, our strong-field dynamo solution forRo= E= 2× 10−5 is
similar to the observed geomagnetic field in many aspects: the field is dominantly dipolar
and drifts westward. Inside the fluid core, our solution differs greatly from the solutions
of Glatzmaier and Roberts [39]. In our solution, the field is dominantly generated in the
bulk of the fluid core outside the tangent cylinder, while the field in the Glatzmaier–Roberts
dynamo solution is generated near the inner core boundary and inside the tangent cylinder.

We have demonstrated [39] that, when a strong viscous coupling is introduced on the
boundaries while the inertia is kept unchanged, the dynamo solutions undergo a transition
from our solution to the solutions qualitatively the same as the Glatzmaier–Roberts dynamo
solutions.

Although these studies (in which the fluid inertia is much larger than that appropriate for
the Earth’s core) help us to understand the effect of strong viscous couplings on dynamo
processes in the fluid core, we still need to investigate the effect of inertia on the dynamo
solutions. One of our goals is to study the effect of the inertia on the fast varying (i.e., short
time scale) flows so that we can apply our results to the geomagnetic secular variations by
appropriate asymptotic extrapolations.

APPENDIX A: NORMAL MODE ANALYSIS

We consider a simple system: an infinite layer of electrically conducting fluid rotating
about vertical, with a prevailing uniform magnetic fieldB0. Introducing small normal mode
perturbations,

f (r , t) = f0ei k·r+λt ,

and neglecting the nonlinear terms of the perturbations, we may obtain from (2.11)–(2.12)
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the dispersion relation

(λ+ k2)
(
Roλ+ k2E ± ikz/k

)+3(k · B0)
2 = 0. (A.1)

There are two limiting cases that are particularly interesting. If the wave numberk is almost
perpendicular toB0, i.e., the perturbation is decoupled from the prevailing magnetic field,
we may obtain from (A.1) the “kinematic” modes

λ = 1

Ro

(− k2E ± ikz/k
)
, (A.2)

together with the (magnetic) free decay modes

λ = −k2. (A.3)

The modes (A.2) are called inertial modes and result from a balance between the Coriolis
force and the inertial force. The decay rate and the oscillation frequency of the inertial
modes differ by a factor ofE−1.

If the perturbations are almost invariant in the direction of the rotation axis, i.e.,kz ≈ 0,
we have the magnetic modes

λ = −k2

2
± i |k · B0|

[
1

Ro
− k4

4(k · B0)2

]1/2

, (A.4)

which are often called torsional oscillations in geomagnetism [40]. They result from a
balance between the inertial force and the Lorentz force. The decay rate and the oscillation
frequency of the magnetic modes differ by a factor ofR−1/2

o .

APPENDIX B: SPHERICAL HARMONIC EXPANSIONS

B.1. Components of the Fluid Flow and the Magnetic Field

Using (3.1), we obtain the following expressions for the components of the flowv and
the vorticityω=∇ × v,

r 2 vr = −L̂ Pv, (B.1)

r sinθ vθ = sinθ
∂

∂θ

∂Pv
∂r
+ ∂Tv
∂φ

, (B.2)

r sinθ vφ = ∂

∂φ

∂Pv
∂r
− sinθ

∂Tv
∂θ
, (B.3)

r 2ωr = −L̂Tv, (B.4)

r sinθ ωθ = sinθ
∂

∂θ

∂Tv
∂r
− ∂

∂φ

(
∂2

∂r 2
+ L̂

r 2

)
Pv, (B.5)

r sinθ ωφ = ∂

∂φ

∂Tv
∂r
+ sinθ

∂

∂θ

(
∂2

∂r 2
+ L̂

r 2

)
Pv, (B.6)
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where

L̂ ≡ 1

sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2
(B.7)

is the angular momentum operator. Replacing (Pv, Tv) by (Pb, Tb) in the above equations,
we obtain similar expressions for the components of the magnetic fieldB and the current
densityJ.

B.2. The Equations of the Magnetic Field B and the Temperature2

Substituting the expansion (3.3) into (B. 1)–(B. 6), and then into1r · (2.12),1r ·∇× (2.12),
and (2.13), we obtain the following equations for the spectral coefficients of the fields,

{
∂

∂t
−
[
∂2

∂r 2
− l (l + 1)

r 2

]}
bm

l =
r 2

l (l + 1)
f lm
3 , (B.8){

∂

∂t
−
[
∂2

∂r 2
− l (l + 1)

r 2

]}
j m
l =

r 2

l (l + 1)
f lm
4 , (B.9){

∂

∂t
− qκ

[
∂2

∂r 2
− l (l + 1)

r 2

]}
Tm

l = r f lm
5 , (B.10)

where

f3 = 1r · [∇ × (v× B)], (B.11)

f4 = 1r · [∇ × ∇ × (v× B)], (B.12)

f5 = −v · ∇T0− v · ∇2. (B.13)

B.3. The Momentum Equations

Because the Coriolis term in (2.11) causes the coupling between adjacent spectral coef-
ficients (vm

l , ωm
l ), we divide the coefficients into two groups according to their symmetry

properties,

[
v

m(s)
l1 , v

m(a)
l1

]T = [vm
m+2l1, v

m
m+2l1+1

]T
, (B.14)

and similarly forωm
l .

Taking1r ·∇× (2.11) and1r ·∇ ×∇× (2.11), applying the spherical harmonic transform
(3.3) and the symmetry parity (B.14), and the recurrence relations

cosθYm
l (θ, φ) = cm

l+1Ym
l+1(θ, φ)+ cm

l Ym
l−1(θ, φ), (B.15)

sinθ
∂

∂θ
Ym

l (θ, φ) = lcm
l+1Ym

l+1(θ, φ)− (l + 1)cm
l Ym

l−1(θ, φ), (B.16)

cm
l =

√
(l −m)(l +m)

(2l − 1)(2l + 1)
, (B.17)
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we obtain the following compact momentum equations for the spectral coefficients of the
toroidal and the poloidal flow,{

Ro
∂

∂t
− E

[
∂2

∂r 2
− l (l + 1)

r 2

]
− im

l (l + 1)

}
ω

m(a)
l1 − (l − 1)

l
cm

l

(
∂

∂r
− l

r

)
v

m(s)
l1

− (l + 2)

(l + 1)
cm

l+1

(
∂

∂r
+ l + 1

r

)
v

m(s)
l1+1 =

r 2

l (l + 1)
f lm
1 , (B.18)

−
{

Ro
∂

∂t
− E

[
∂2

∂r 2
− l (l + 1)

r 2

]
− im

l (l + 1)

}[
∂2

∂r 2
− l (l + 1)

r 2

]
v

m(s)
l1

− (l − 1)

l
cm

l

(
∂

∂r
− l

r

)
ω

m(a)
l1−1 −

(l + 2)

(l + 1)
cm

l+1

(
∂

∂r
+ l + 1

r

)
ω

m(a)
l1

= r 2

l (l + 1)
f lm
2 +

[
RthTm

l + RcoC
m
l

]
, (B.19)

and{
Ro
∂

∂t
− E

[
∂2

∂r 2
− l (l + 1)

r 2

]
− im

l (l + 1)

}
ω

m(s)
l1 − (l − 1)

l
cm

l

(
∂

∂r
− l

r

)
v

m(a)
l1−1

− (l + 2)

(l + 1)
cm

l+1

(
∂

∂r
+ l + 1

r

)
v

m(a)
l1 = r 2

l (l + 1)
f lm
1 , (B.20)

−
{

Ro
∂

∂t
− E

[
∂2

∂r 2
− l (l + 1)

r 2

]
− im

l (l + 1)

}[
∂2

∂r 2
− l (l + 1)

r 2

]
v

m(a)
l1

− (l − 1)

l
cm

l

(
∂

∂r
− l

r

)
ω

m(s)
l1 − (l + 2)

(l + 1)
cm

l+1

(
∂

∂r
+ l + 1

r

)
ω

m(s)
l1+1

= r 2

l (l + 1)
f lm
2 +

[
RthTm

l + RcoC
m
l

]
, (B.21)

where

f1 = 1r · ∇ × [J× B− Roω × v], (B.22)

f2 = 1r · ∇ × ∇ × [J× B− Roω × v]. (B.23)

Note that (f1, f2) in (B.22)–(B.23) are similar to (f3, f4) in (B.11)–(B.12). Equations (B.8)–
(B.10) and (B.18)–(B.21) can be written in a generalized form (3.4).

APPENDIX C: NONLINEAR EIGENVALUES OF THE NONLINEAR TERMS

Denote byf the flow of the system

f = (v,B,2)T . (C.1)

Assuming that

f ′ = (v′,B′,2′)T (C.2)
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is a small departure from the state (C.1), retaining and linearizing the terms in (2.11)–(2.13)
that are solved explicitly, and replacing∂t with the eigenvalueλ, we obtain

(λ+ v · ∇)v′ = −v′ · ∇v+ 1

Ro
(B · ∇B′ + B′ · ∇B)+ r

Rth

Ro
2′, (C.3)

(λ+ v · ∇)B′ = −v′ · ∇B+ B · ∇v′ + B′ · ∇v, (C.4)

(λ+ v · ∇)2′ = −v′ · ∇(To +2). (C.5)

This eigenvalue problem leads to a seventh-order equation for the eigenvalue.
Because we are looking for the largest local eigenvalueλ on the collocation points, we

could approximatef as a local constant and replace∇ by the local mesh size1h−1. Then
we may obtain the following eigenvalues that possess the largest magnitude,

λ̃ = −v ·1h−1±
√
(v ·1h−1)2+ 4

[
1

Ro
(B ·1h−1)2− RthT ′0

Ro

]
. (C.6)

APPENDIX D: MAGNETIC TORQUE AND THE ANGULAR MOMENTUM

The angular momentum of the inner core and the mantle can be written as

Mi = Li j ω j , (D.1)

whereLi j is the tensor of the momentum inertia andωi is the angular velocity. In this paper
we assume the spherically symmetric system,

Li j = Lδi j , (D.2)

where, in nondimensional form,

L (i ) = ρ(i )

ρ

∫
r≤rio

(x2+ y2) dV = 8π

15

(
ρ(i )

ρ

)
r 5

io, (D.3)

L (m) = ρ(m)

ρ

∫
1≤r≤reo

(x2+ y2) dV = 8π

15

(
ρ(m)

ρ

)(
r 5

eo− 1
)
. (D.4)

The superscriptsi andm in the above equations indicate the inner core and the mantle,
respectively. Equations (D.2) and (D.3) are to leading order good approximations to the
Earth because the Earth’s ellipticity is small [41].

The magnetic torque on the inner core is, in nondimensional form,

ΓB = 3
∫

r≤rio

r × (J× B) dV = 3
∫

r=rio

(r × B)Br dS. (D.5)

Therefore,

0B,x =
√

2π

3
3

∫
r=rio

r 2Br

sinθ
(r Bφ cosθ − ir Bθ )Y

1
1 dÄ+ c.c. (D.6)

0B,y = −
√

2π

3
3

∫
r=rio

r 2Br

sinθ
(r Bθ + ir Bφ cosθ)Y1

1 dÄ+ c.c. (D.7)
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0B,z =
√

4π3
∫

r=rio

(
r 2Br

)
(r Bφ sinθ)Y0

0 dÄ, (D.8)

wheredÄ is the differential solid angle. Changing the signs in (D.6)–(D.8) and replacing
r = rio by r = 1, we obtain the magnetic torque on the solid mantle.

The velocity field of a solid body rotation with the angular velocityω is of the form

v = ω × r = (ωyz− ωzy)1x + (ωzx − ωxz)1y + (ωx y− ωyx)1z. (D.9)

Applying the transform relations between the Cartesian coordinate and the spherical coor-
dinate, we obtain

(r sinθvθ ) = r 2(ωy sinθ cosφ − ωx sinθ sinφ)

= −
√

2π

3
r 2
[
(ωy + iωx)Y

1
1 + c.c.

]
, (D.10)

(r sinθ vφ) = ωzr
2 sin2 θ − r 2(ωx sinθ cosθ cosφ + ωy sinθ cosθ sinφ)

= ωzr
2 sin2 θ +

√
2π

15
r 2
[
(ωx − iωy)Y

1
2 + c.c.

]
. (D.11)

The consequence of ignoring non-axisymmetric inertia is to eliminate fast, free preces-
sions in our system. To demonstrate this, consider the horizontal torques

0x = L Ax sinαt, 0y = L Ay cosαt. (D.12)

By the full equation (2.10), we have

ωx = c1 sin
t

2Ro
+ c2 cos

t

2Ro
+ 2

Ay + (2Roα)Ax

1− (2Roα)2
cosαt (D.13)

ωy = c1 cos
t

2Ro
+ c2 sin

t

2Ro
− 2

Ax + (2Roα)Ay

1− (2Roα)2
sinαt, (D.14)

wherec1 andc2 are arbitrary constants that determine the free precessions. The free oscil-
lations vary on a time scale of 1/(2Ro), or that of the rotation of the system. If the torques
0x and0y vary on a much longer time, i.e.,α ¿ 1/(2Ro), then the approximation (2.23)
determines to leading order the forced precessions that are described in the last terms in
(D.13) and (D.14).

ACKNOWLEDGMENTS

We thank Drs. Glatzmaier and Roberts for many discussions about their work, Dr. Holme for providing
eigenvalue results on benchmarking the Kumar–Roberts dynamo, and Drs. Bergman and St. Pierre for many
useful discussions. This work was supported by the NSF under Grants EAR9317156 and EAR9526914, and by
the Packard Foundation. W.K. is also supported by the NASA Solid Earth and Natural Hazard Program.

REFERENCES

1. G. A. Glatzmaier and P. H. Roberts, A three-dimensional convective dynamo solution with rotating and finitely
conducting inner core and mantle,Phys. Earth Planet. Inter.91, 63 (1995).



80 KUANG AND BLOXHAM

2. G. A. Glatzmaier and P. H. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic
field reversal,Nature377, 203 (1995).

3. G. A. Glatzmaier and P. H. Roberts, An anelastic evolutionary geodynamo simulation driven by compositional
and thermal convection,Phys. D97, 81 (1996).

4. G. A. Glatzmaier and P. H. Roberts, Rotation and magnetism of Earth’s inner core,Science274, 1887 (1996).

5. S. Kumar and P. H. Roberts, A three dimensional kinematic dynamo,Proc. Roy. Soc. London Ser. A314, 235
(1975).

6. S. Chandrasekhar,Hydrodynamic and Hydromagnetic Stability(Dover, New York, 1981).

7. T. G. Cowling, The magnetic field of sunspots,Mon. Not. Roy. Astron. Soc. 94, 39 (1934).

8. D. Gubbins and P. H. Roberts, Magnetohydrodynamics of the Earth’s core, inGeomagnetism, edited by J. A.
Jacobs (Academic Press, London, 1987), Vol. 2, Chap. 1.

9. M. G. St. Pierre,On the Numercial Simulation of Rapidly Rotating, Strong Field Dynamos, Ph.D. thesis, 1993.

10. C. A. Jones, A. W. Longbottom, and R. Hollerbach, A self-consistent convection driven geodynamo model
using a mean field approximation,Phys. Earth Planet. Inter.92, 119 (1995).

11. J. B. Taylor, The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem,Proc. Roy. Soc.
London. Ser. A274, 274 (1963).

12. H. Goldstein,Classical Mechanics(Addison–Wesley, Reading, MA, 1980).

13. M. R. Walker, C. F. Barenghi, and C. A. Jones, A note on dynamo action at asymptotically small Ekman
number,Geophys. Astrophys. Fluid Dynam. 88, 261 (1998).

14. H. P. Greenspan,The Theory of Rotating Fluids(Cambridge Univ. Press, Cambridge, UK, 1968).

15. D. R. Fearn, M. R. E. Proctor, and C. C. Sellar, Nonlinear magnetoconvection in a rapidly rotating sphere and
taylor’s constraint,Geophys. Astrophys. Fluid Dynam. 77, 111 (1994).

16. D. R. Fearn and M. R. E. Proctor, Magnetostrophic balance in non-axisymmetric, non-standard dynamo
models,Geophys. Astrophys. Fluid Dynam. 67, 117 (1992).

17. J. G. Tough and P. H. Roberts, Nearly symmetric hydrodynamic dynamos,Phys. Earth Planet. Inter. 1, 288
(1968).

18. S. I. Braginsky, Nearly axially symmetric model of the hydromagnetic dynamo of the earth,Geomag. Aeron.
18, 225 (1978).

19. D. Jault and J.-L. LeMou¨el, The topographic torque associated with a tangentially geostrophic motion at the
core surface and inferences on the flow inside the core,Geophys. Astrophys. Fluid Dynam. 48, 273 (1989).

20. J. Bloxham and A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary,
J. Geophys. Res. 97, 19537 (1992).

21. P. H. Roberts and K. Stewartson, On double-roll convection in a rotating magnetic system, J.Fluid Mech. 68,
447 (1975).

22. D. Jault, Modelz by computation andtaylor’s condition,Geophys. Astrophys. Fluid Dynam. 79, 99 (1995).

23. L. D. Landau and E. M. Lifshitz,Fluid Mechanics(Pergamon Elmsford, New York, 1981).

24. G. A. Glatzmaier, Numerical simulations of stellar convective dynamos. I. The model and method,J. Comput.
Phys. 55, 461 (1984).

25. C. Canuto, M. Y. Hussaini, T. A. Zang, and A. Quarteroni,Spectral Methods in Fluid Dynamics(Springer-
Verlag, Berlin/New York, 1988).

26. B. K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of legendre expansions,SIAM J. Sci. Statist.
Comput. 12, 158 (1991).

27. G. Dahlquist, A special stability problem for linear multistep methods,BIT 3, 27 (1963).

28. C. W. Gear,Numerical Initial Value Problems in Odrdinary Differential Equations(Prentice Hall, New York,
1971).

29. F. H. Busse, Thermal instabilities in rapidly rotating systems,J. Fluid Mech. 44, 441 (1970).

30. Jun-Ichi Yano, Asymptotic theory of thermal convection in rapidly rotating systems,J. Fluid Mech. 243, 103
(1992).

31. G. R. Sarson and D. Gubbins, Three-dimensional kinematic dynamos dominated by strong differential rotation,
J. Fluid Mech. 306, 223 (1996).



NUMERICAL MODELING OF THE GEODYNAMO 81

32. R. Holme, Three-dimensional kinematic dynamos with equatorial symmetry: Application to the magnetic
fields of uranus and neptune,Phys. Earth Planet. Inter. 102, 105 (1997).

33. S. Childress and A. M. Soward, Convection-driven hydromagnetic dynamo,Phys. Rev. Lett. 29, 837 (1972).

34. P. H. Roberts and D. Gubbins, Origin of the main field: Kinematics, inGeomagnetism, edited by J. A. Jacobs
(Academic Press, London, 1987), Vol. 2, Chap. 2.

35. F. H. Busse, A model of the geodynamo,Geophys. J. Roy. Astron. Soc. 42, 437 (1975).

36. P. A. Gilman and J. Miller, Numerical simulations of stellar convective dynamos. I. The model and method,
Astrophys. J. Suppl. 46, 211 (1981).

37. R. Hollerbach and C. A. Jones, Influence of the Earth’s inner core on geomagnetic fluctuations and reversals,
Nature365, 541 (1993).

38. J. Bloxham, Global magnetic field, inGlobal Earth Physics(AGU Reference Shelf, 1995), Vol. 1, pp. 47–65.

39. W. Kuang and J. Bloxham, A numerical model of the generation of the Earth’s magnetic field,Nature365,
371 (1997).

40. S. I. Braginsky, Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length,
Geomag. Aeron. 10, 1 (1976).

41. F. D. Stacey,Physics of the Earth(Brookfield Press, 1992).


	1. INTRODUCTION
	FIG. 1.

	2. MATHEMATICAL MODEL
	3. NUMERICAL METHOD
	4. THERMAL INSTABILITY AND KINEMATIC DYNAMO SOLUTIONS
	FIG. 2.
	FIG. 3.
	TABLE I
	FIG. 4.
	FIG. 5.

	5. THERMALLY DRIVEN SELF-CONSISTENT DYNAMOS
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	6. CONCLUSIONS
	APPENDIX A: NORMAL MODE ANALYSIS
	APPENDIX B: SPHERICAL HARMONIC EXPANSIONS
	APPENDIX C: NONLINEAR EIGENVALUES OF THE NONLINEAR TERMS
	APPENDIX D: MAGNETIC TORQUE AND THE ANGULAR MOMENTUM
	ACKNOWLEDGMENTS
	REFERENCES

